viernes, 4 de diciembre de 2009
El ojo de un insecto
La mayoría de los insectos tienen un par de ojos compuestos relativamente grandes, localizados dorso-lateralmente en la cabeza. La superficie de cada ojo compuesto está dividida en un cierto número de áreas circulares o hexagonales llamadas facetas u omatidios; cada faceta es una lente de una única unidad visual. En adición a los ojos compuestos, la mayoría de los insectos posee tres ojos simples u ocelos localizados en la parte superior de la cabeza, entre los ojos compuestos.
Los ojos compuestos se encuentran en los artrópodos (insectos y animales similares) y están formados por muchas facetas simples que dan una imagen "pixelada", o sea, en mosaico (no imágenes múltiples, como a menudo se cree).
Un ojo compuesto es un órgano visual que se encuentra en ciertos artrópodos como insectos y crustáceos. Consiste en la agrupación de entre 12 y varios miles (6.300 en Apis mellifera) de unidades receptivas llamadas omatidios. Los omatidios son unidades sensoriales formadas por células capaces de distinguir entre la presencia y la falta de luz y, en algunos casos, capaces de distinguir entre colores. La imagen que percibe un artrópodo es el conjunto de señales de los múltiples omatidios orientados en direcciones diferentes. Contrariamente a otros tipos de ojos, no tiene una lente central o retina, lo cual implica una baja resolución de imagen. Asimismo, el ojo compuesto es capaz de detectar movimientos rápidos, ve un amplio rango de ángulo sólido y, en algunos casos, percibe la polarización de la luz.
Cada omatidio consiste en una lente y un rabdómero, que consiste en un grupo de células receptoras visuales puestas en paralelo o ligeramente giradas.
El ojo de un molusco
*En la mayoría de los vertebrados y algunos moluscos, el ojo funciona proyectando imágenes a la retina, donde la luz se transforma gracias a unas células llamadas fotoreceptoras en impulsos nerviosos que son trasladados a través del nervio óptico al cerebro.
Los ojos proporcionan una indudable ventaja competitiva para la caza y la defensa, por lo que su perfeccionamiento fue determinante en la lucha por la supervivencia. A primera vista, el ojo de los cefalópodos se parece mucho al de los vertebrados: posee forma esférica, lente, córnea, iris y fluido vítreo. La similitud es aún más asombrosa al considerar que la aparición de los ojos en estos moluscos no tiene ninguna relación evolutiva con los vertebrados. Han avanzado por los erráticos caminos de la selección natural de forma independiente, desarrollando ojos de gran complejidad anatómica que les proporcionan una excelente visión. Sin embargo, son muchas más las diferencias que los parecidos.En la retina de los ojos de los cefalópodos se disponen los rabdómeros, unas células de estructura tubular sensibles a la luz, orientadas en igual dirección y en el mismo sentido de entrada de la fuente luminosa, lo que le confiere el aspecto de un cepillo de dientes. Los vertebrados tienen otro tipo de células fotorreceptoras –conos y bastones- que se disponen en sentido inverso, mirando hacia la retina, lo que se denomina visión de tipo indirecto.
La distribución de las células fotosensibles no es homogénea en toda la superficie de la retina, sino que hay zonas con mayor concentración de rabdómeros. Sepias y pulpos, ambos de vida bentónica, poseen una línea horizontal que es más sensible a la luz –el equivalente a la fóvea de los vertebrados-, más densa todavía en la parte posterior, que es donde se forma la imagen. Al observar la pupila de los pulpos se puede comprobar que tienen forma de raya horizontal, las de las sepias parece una uve doble, y los calamares, al ser de vida pelágica, no tienen esas zonas sensibles, ya que el comer –o ser comido- es algo que puede venir desde cualquier parte.
en los cefalópodos las lentes son rígidas, por lo que deben variar su distancia respecto a la retina gracias a un complejo paquete muscular. Al poseer una longitud focal de 2’5 veces el radio, se estima que pueden formar imágenes de alta calidad desde cortas distancias hasta el infinito.
El enfoque no depende de la flexibilidad del cristalino sino de que éste se halle a la distancia apropiada de la retina. Cuanto más crece el animal más grande es el ojo, y dado que los rabdómeros no varían de tamaño en toda la vida, conforme aumenta la superficie retiniana se va tapizando por más células fotosensibles.
los cefalópodos poseen un solo pigmento visual, la rodopsina, con picos de absorción luminosa que varían según la forma de vida de cada especie. Esto ha llevado a los científicos a inferir que no son capaces de distinguir los colores, pues se necesitarían al menos dos pigmentos para poder discriminar distintas longitudes de onda, es decir, para ver “en color”.
Funcionamiento del ojo humano
En general, los ojos funcionan como unas cámaras fotográficas sencillas. La lente del cristalino forma en la retina una imagen invertida de los objetos que enfoca y la retina se corresponde con la película sensible a la luz. El ojo recibe los estímulos de los rayos de luz procedentes del entorno y los transforman en impulsos nerviosos. Estos impulsos llegan hasta el centro cerebral de la visión, donde se descodifican y se convierten en imágenes.
La función del ojo es traducir las vibraciones electromagnéticas de la luz en un determinado tipo de impulsos nerviosos que se transmiten al cerebro ; este tipo de receptor se llama fotorreceptor y el ojo es el único que lo posee. El tipo de célula sensorial que tiene esta función es ,específicamente, el bastón y el cono , su estímulo es la luz .
La lente del cristalino forma en la retina una imagen invertida de los objetos que enfoca y la retina se corresponde con la película sensible a la luz.
El enfoque del ojo se lleva a cabo debido a que la lente del cristalino se aplana o redondea; este proceso se llama acomodación. En un ojo normal no es necesaria la acomodación para ver los objetos distantes, pues se enfocan en la retina cuando la lente está aplanada gracias al ligamento suspensorio. Para ver los objetos más cercanos, el músculo ciliar se contrae y por relajación del ligamento suspensorio, la lente se redondea de forma progresiva.
Motor eléctrico
Son ampliamente utilizados en instalaciones industriales, comerciales y de particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.
Los motores de corriente alterna y los motores de corriente continua se basan en el mismo principio de funcionamiento, el cuál establece que si un conductor por el cual circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético.
El conductor tiende a funcionar como un electroimán debido a la corriente eléctrica que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estator, el movimiento circular que se observa en el rotor del motor.
Partiendo del hecho de que cuando pasa corriente eléctrica por un conductor se produce un campo magnético, además si lo ponemos dentro de la acción de un campo magnético potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energía es comunicada al exterior mediante un dispositivo llamado flecha.
¿Cómo se genera la electricidad?
Las centrales generadoras se pueden clasificar en termoeléctricas (de combustibles fósiles, biomasa, nucleares o solares), hidroeléctricas, eólicas, solares fotovoltaicas o mareomotrices. La mayor parte de la energía eléctrica generada a nivel mundial proviene de los tres primeros tipos de centrales reseñados: termoeléctricas, hidroeléctricas y eólicas. Todas estas centrales, excepto las fotovoltaicas, tienen en común el elemento generador, constituido por un alternador, movido mediante una turbina que será distinta dependiendo del tipo de energía primaria utilizada.
La demanda de energía eléctrica de una ciudad, región o país tiene una variación a lo largo del día. Esta variación es función de muchos factores, entre los que se destacan: tipos de industrias existentes en la zona y turnos que realizan en su producción, tipo de electrodomésticos que se utilizan más frecuentemente, tipo de calentador de agua que haya instalado en los hogares, la meteorología, la estación del año y la hora del día en que se considera la demanda. La generación de energía eléctrica debe seguir la curva de demanda y, a medida que aumenta la potencia demandada, se debe incrementar el suministro. Esto conlleva el tener que iniciar la generación con unidades adicionales, ubicadas en la misma central o en centrales reservadas para estos períodos. En general los sistemas de generación se diferencian por el periodo del ciclo en el que deben ser utilizados, siendo normalmente de base la nuclear o la eólica, de valle las termoeléctricas de combustibles fósiles y de pico la hidroeléctrica principalmente. Los combustibles fósiles y la hidroeléctrica también pueden usarse como base si es necesario.
UNIDAD III Michael Faraday
Fue un físico y químico británico que estudió el electromagnetismo y la electroquímica.
Fue discípulo del químico Humphry Davy, y ha sido conocido principalmente por su descubrimiento de la inducción electromagnética, que ha permitido la construcción de generadores y motores eléctricos, y de las leyes de la electrólisis, por lo que es considerado como el verdadero fundador del electromagnetismo y de la electroquímica.
En 1831 trazó el campo magnético alrededor de un conductor por el que circula una corriente eléctrica (ya descubierto por Oersted), y ese mismo año descubrió la inducción electromagnética, demostró la inducción de una corriente eléctrica por otra, e introdujo el concepto de líneas de fuerza, para representar los campos magnéticos. Durante este mismo periodo, investigó sobre la electrólisis y descubrió las dos leyes fundamentales que llevan su nombre:
La masa de sustancia liberada en una electrólisis es directamente proporcional a la cantidad de electricidad que ha pasado a través del electrólito masa = equivalente electroquímico, por la intensidad y por el tiempo (m = c I t)
Las masas de distintas sustancia liberadas por la misma cantidad de electricidad son directamente proporcionales a sus pesos equivalentes.
Con sus investigaciones se dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.
Se denomina faradio (F), en honor a Michael Faraday, a la unidad de capacidad eléctrica del SI de unidades. Se define como la capacidad de un conductor tal que cargado con una carga de un culombio, adquiere un potencial electrostático de un voltio. Su símbolo es F.